Rabu, 16 Oktober 2013

mekanisme gerak otot

Sejak tahun 1940, ion Kalsium diyakini turut berperan serta dalam pengaturan kontraksi otot. Kemudian, sebelum 1960, Setsuro Ebashi menunjukkan bahwa pengaruh Ca­2+  ditengahi oleh Troponin dan Tropomiosin. Ia menunjukkan aktomiosin yang diekstrak langsung dari otot (sehingga mengandung ikatan dengan troponin dan tropomiosin) berkontraksi karena ATP hanya jika Ca­2+ ada pula. Kehadiran troponin dan tropomiosin pada sistem aktomiosin tersebut meningkatkan sensitivitas sistem terhadap Ca­2+. Di samping itu, subunit dari troponin, TnC, merupakan satu-satunya komponen pengikat Ca­2+.
Kontraksi otot halus tetap dipicu oleh Ca­2+ karena miosin rantai ringan kinase (=myosin light chain kinase / MLCK) secara enzimatik akan menjadi aktif hanya jika Ca­2+-kalmodulin hadir. Konsentrasi intraselular [Ca­2+] bergantung pada permeabilitas membran plasma sel otot halus terhadap Ca­2+. Permeabilitas otot halus tersebut dipengaruhi oleh sistem saraf involunter atau autonomik. Saat [Ca­2+] meningkat, kontraksi otot halus dimulai. Saat [Ca­2+menurun akibat pengaruh Ca­2+- ATPase dari membran plasma, MLCK kemudian dideaktivasi
Dari hasil penelitian dan pengamatan dengan mikroskop elektron dan difraksi sinar X, Hansen dan Huxly (l955) mengemukkan teori kontraksi otot yang disebut model sliding filaments. Model ini menyatakan bahwa kontraksi didasarkan adanya dua set filamen di dalam sel otot kontraktil yang berupa filament aktin dan filamen miosin.. Rangsangan yang diterima oleh asetilkolin menyebabkan aktomiosin mengerut (kontraksi). Kontraksi ini memerlukan energi.
Pada waktu kontraksi, filamen aktin meluncur di antara miosin ke dalam zona H (zona H adalah bagian terang di antara 2 pita gelap). Dengan demikian serabut otot menjadi memendek yang tetap panjangnya ialah ban A (pita gelap), sedangkan ban I (pita terang) dan zona H bertambah pendek waktu kontraksi.
Ujung miosin dapat mengikat ATP dan menghidrolisisnya menjadi ADP. Beberapa energi dilepaskan dengan cara memotong pemindahan ATP ke miosin yang berubah bentuk ke konfigurasi energi tinggi. Miosin yang berenergi tinggi ini kemudian mengikatkan diri dengan kedudukan khusus pada aktin membentuk jembatan silang. Kemudian simpanan energi miosin dilepaskan, dan ujung miosin lalu beristirahat dengan energi rendah, pada saat inilah terjadi relaksasi. Relaksasi ini mengubah sudut perlekatan ujung myosin menjadi miosin ekor. Ikatan antara miosin energi rendah dan aktin terpecah ketika molekul baru ATP bergabung dengan ujung miosin. Kemudian siklus tadi berulang Iagi.
Mekanisme kerja otot pada dasarnya melibatkan suatu perubahan dalam keadaan yang relatif dari filamenfilamen aktin dan myosin. Selama kontraksi otot, filamen-filamen tipis aktin terikat pada dua garis yang bergerak ke Pita A, meskipun filamen tersebut tidak bertambah banyak.Namun, gerakan pergeseran itu mengakibatkan perubahan dalam penampilan sarkomer, yaitu penghapusan sebagian atau seluruhnya garis H. selain itu filamen myosin letaknya menjadi sangat dekat dengan garis-garis Z dan pita-pita A serta lebar sarkomer menjadi berkurang sehingga kontraksi terjadi. Kontraksi berlangsung pada interaksi antara aktin miosin untuk membentuk komplek aktin-miosin.
Mekanisme kerja otot pada dasarnya melibatkan suatu perubahan dalam keadaan yang relatif dari filamen-filamen aktin dan myosin. Selama kontraksi otot, filamen-filamen tipis aktin terikat pada dua garis yang bergerak ke Pita A, meskipun filamen tersebut tidak bertambah banyak.Namun, gerakan pergeseran itu mengakibatkan perubahan dalam penampilan sarkomer, yaitu penghapusan sebagian atau seluruhnya garis H. selain itu filamen myosin letaknya menjadi sangat dekat dengan garis-garis Z dan pita-pita A serta lebar sarkomer menjadi berkurang sehingga kontraksi terjadi. Kontraksi berlangsung pada interaksi antara aktin miosin untuk membentuk komplek aktin-miosin.

Suatu stimulus tunggal (yang menimbulkan potensial aksi) bila dikenakan pada suatu serabut otot, akan menghasilkan suatu kontraksi otot tunggal pada serabut otot tersebut. Bila potensial aksi kedua diberikan setelah otot mencapai relaksasi penuh, maka akan terjadi kontraksi tunggal kedua dengan kekuatan sama dengan kontraksi pertama. Namun bila potensial aksi kedua itu diberikan belum mencapai relaksasi penuh, maka akan terjadi kontraksi tambahan pada puncak kontraksi pertama kondisi ini dinamakan penjumlahan kontraksi. Bila suatu otot diberi stimulus dengan sangat cepat namun diantara dua stimuli masih ada sedikit relaksasi, maka akan terjadi tetanus tidak sempurna. Bila tidak ada kesempatan otot untuk relaksasi diantara dua stimuli, maka akan terjadi kontraksi dengan kekuatan maksimum yang disebut tetanus sempurna.

Tidak ada komentar:

Posting Komentar